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Abstract We prove that, for κ ∈ (0,4) and ρ ≥ (κ − 4)/2, the chordal SLE(κ;ρ) trace
started from (0;0+) or (0;0−) satisfies the reversibility property. And we obtain the equation
for the reversal of the chordal SLE(κ;ρ) trace started from (0;b0), where b0 > 0.
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1 Introduction

In the proof of the reversibility of the SLE(κ) trace [9], where κ ∈ (0,4], a new technique
was developed to construct a coupling of two SLE(κ) traces, such that in that coupling, the
images of the two traces coincide, and the directions of the two traces are opposite. That
technique was then used to prove the Duplantier’s duality conjecture [10, 11]. Comparing
Theorem 5.4 in [10] with Julien Dubédat’s Conjecture 2 in [1], the author proposed the
following conjecture in [10].

Conjecture 1 Let β0(t), 0 ≤ t < ∞, be a chordal SLE(κ;ρ+, ρ−) trace started from
(0;0+,0−), where κ ∈ (0,4) and ρ+, ρ− ≥ (κ − 4)/2. Let W0(z) = 1/z. Then after a time-
change, (W0(β0(1/t))), 0 < t < ∞, has the same distribution as (β0(t)), 0 < t < ∞.

It’s already known that this conjecture holds in some special cases. If ρ+ = ρ− = 0, then
β0 is a standard SLE(κ) trace, and the result follows from [9]. If κ = 0, then β0 is a half
line from 0 to ∞, which is a trivial case. If κ = 4, then it follows from the convergence of
the discrete Gaussian free field contour line [5]; and it is also a special case of Theorem 5.5
in [10]. The motivation of the current paper is to prove the above conjecture. We will only
prove part of it, that is, the case when ρ+ or ρ− equals to 0. If, for example, ρ− = 0, then β0

reduces to a chordal SLE(κ;ρ+) trace started from (0;0+). The main theorem of this paper
is the following.
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Theorem 1.1 Let κ ∈ (0,4) and ρ ≥ (κ − 4)/2. Suppose β0(t), 0 ≤ t < ∞, is a chordal
SLE(κ;ρ) trace started from (0;0σ ), where σ ∈ {+,−}. Let W0(z) = 1/z. Then after a
time-change, W0(β0(1/t)), 0 < t < ∞, has the same distribution as β0(t), 0 < t < ∞.

We will see that Theorem 1.1 here and Theorem 5.4 in [10] imply Dubédat’s conjecture.
Besides the special cases that ρ = 0, κ = 0 or 4, the above theorem is also known to be true
in the case that κ = 8/3. This follows from [3] because the image of β0 satisfies the left-
sided or right-sided restriction property with exponent depending on ρ, and the one-sided
restriction measure is invariant under the map W0(z) = 1/z.

The proof of Theorem 1.1 will be completed in the last section. We will use the technique
used in [9] and [10]. The new difficulty here is that when applying the above technique, we
need some information about the “middle” part of the curve β0. This means that given a
stopping time T1 > 0 and a “backward” stopping time T2 < ∞ with T1 < T2, we need to
know the conditional distribution of β0(t), T1 < t < T2, given the curves β0((0;T1]) and
β0([T2;∞)). This is known in some special cases. If β0 is a standard chordal SLE(κ) trace,
which corresponds to the case that ρ = 0, then β0(t), T1 < t < T2, is a time-change of a
chordal SLE(κ) trace in H \ (β0((0;T1]) ∪ β0([T2;∞))) from β0(T1) to β0(T2). If κ = 4,
from the proof of Theorem 5.5 in [10], we see that β0(t), T1 < t < T2, is a time-change
of a generic SLE(κ;ρ) trace in H \ (β0((0;T1]) ∪ β0([T2;∞))). In the general case, as
we will see, the conditional distribution of β0(t), T1 < t < T2, is complicated. To describe
this middle part of β0, we will use hypergeometric functions to define a new kind of SLE-
type processes, which are called intermediate SLE(κ;ρ) processes. These new SLE-type
processes will also be used to describe the reversal of an SLE(κ;ρ) trace whose force point
is not degenerate. This is Theorem 1.2 below, whose proof will also be completed in the last
section.

Theorem 1.2 Suppose β0(t), 0 ≤ t < ∞, is a chordal SLE(κ;ρ) trace started from (0;b0)

with b0 > 0. Let W0(z) = 1/z. Then after a time-change, W0(β0(1/t)), 0 < t < ∞, has the
same distribution as a degenerate intermediate SLE(κ;ρ) trace with force points 0+ and
1/b0.

The current paper will frequently use results from [9] and [10]. The reader is suggested
to have copies of those two papers by hand for convenience.

After finishing the first version of this paper, the author noticed that Corollary 9 in [2]
is equivalent to Theorem 1.1 here. It seems to the author that some important details are
omitted in [2]. The proofs in this paper will be completed, and contain all details. And the
approach of this paper is somewhat different from that in [2].

2 Preliminary

If H is a bounded and relatively closed subset of H = {z ∈ C : Im z > 0}, and H\H is simply
connected, then we call H a hull in H w.r.t. ∞. For such H , there is ϕH that maps H\H con-
formally onto H, and satisfies ϕH (z) = z + c

z
+ O( 1

z2 ) as z → ∞, where c = hcap(H) ≥ 0
is called the half-plane capacity of H . A hull H with hcap(H) = c has diameter at least

√
c.

If H1 ⊂ H2 are hulls in H w.r.t. ∞, then H2/H1 := ϕH1(H2 \ H1) is also a hull in H w.r.t.
∞, and we have ϕH2 = ϕH2/H2 ◦ ϕH1 .
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For a real interval I , we use C(I) to denote the space of real continuous functions on I .
For T > 0 and ξ ∈ C([0, T )), the chordal Loewner equation driven by ξ is

∂tϕ(t, z) = 2

ϕ(t, z) − ξ(t)
, ϕ(0, z) = z. (2.1)

For 0 ≤ t < T , let K(t) be the set of z ∈ H such that the solution ϕ(s, z) blows up before or
at time t . Then each K(t) is a hull in H w.r.t. ∞, hcap(K(t)) = 2t , and ϕ(t, ·) = ϕK(t). We
call K(t) and ϕ(t, ·), 0 ≤ t < T , the chordal Loewner hulls and maps, respectively, driven
by ξ .

Let B(t), 0 ≤ t < ∞, be a (standard) Brownian motion. Let κ > 0. Then K(t) and ϕ(t, ·),
0 ≤ t < ∞, driven by ξ(t) = √

κB(t), 0 ≤ t < ∞, are called the standard chordal SLE(κ)

hulls and maps, respectively. It is known [4, 8] that almost surely for any t ∈ [0,∞),

β(t) := lim
H�z→ξ(t)

ϕ(t, ·)−1(z) (2.2)

exists, and β(t), 0 ≤ t < ∞, is a continuous curve in H. Moreover, if κ ∈ (0,4] then β is a
simple curve, which intersects R only at the initial point, and for any t ≥ 0, K(t) = β((0, t]);
if κ > 4 then β is not simple, and intersects R at infinitely many points; and in general,
H \ K(t) is the unbounded component of H \ β((0, t]) for any t ≥ 0. Such β is called a
standard chordal SLE(κ) trace.

If (ξ(t)) is a semi-martingale with d〈ξ 〉t = κ dt for some κ > 0, then from the Girsanov’s
theorem ([7]) and the existence of standard chordal SLE(κ) trace, we see that almost surely
for any t ∈ [0, T ), β(t) defined by (2.2) exists, and has the same property as a standard
chordal SLE(κ) trace (depending on the value of κ) as described in the last paragraph.

Let κ > 0, N ∈ N, �ρ = (ρ1, . . . , ρN) ∈ R
N , x0 ∈ R, and �p = (p1, . . . , pN) ∈ (̂R \ {x0})N ,

where ̂R = R ∪ {∞} is a circle. Let B(t) be a Brownian motion, which generates a filtration
(Ft ). Let ξ(t) and pm(t), 1 ≤ m ≤ N , 0 ≤ t < T , be the maximal solutions to the SDE:

{

dξ(t) = √
κ dB(t) + ∑N

m=1
ρm dt

ξ(t)−pm(t)

dpm(t) = 2dt
pm(t)−ξ(t)

, 1 ≤ m ≤ N,
(2.3)

with initial values

ξ(0) = x0, pm(0) = pm, 1 ≤ m ≤ N.

The meaning of the maximal solutions is that [0, T ) is the maximal interval of the solution.
Here if some pm = ∞ then pm(t) = ∞ and ρm

ξ(t)−pm(t)
= 0 for all t ≥ 0, so pm has no effect

on the equation. Let K(t), 0 ≤ t < T , be the chordal Loewner hulls driven by ξ . Then
we call K(t), 0 ≤ t < T , a chordal SLE(κ;ρ1, . . . , ρN) or SLE(κ; �ρ) process started from
(x0;p1, . . . , pN) or (x0; �p). It is known that (ξ(t)) is an (Ft )-semi-martingale with d〈ξ 〉t =
κdt . So the chordal Loewner trace β(t), 0 ≤ t < T , driven by ξ exists, and is called a chordal
SLE(κ; �ρ) trace started from (x0; �p). These pm’s and ρm’s are called the force points and
forces, respectively.

The chordal SLE(κ; �ρ) processes defined above are of generic cases. We now introduce
degenerate SLE(κ; �ρ) processes, where one of the force points takes value x+

0 or x−
0 , or

two of the force points take values x+
0 and x−

0 , respectively. The force point x+
0 or x−

0 is
called a degenerate force point. The definitions are as follows. Suppose p1 = x+

0 is the only
degenerate force point. Let ξ(t) and pm(t), 1 ≤ k ≤ N , 0 < t < T , be the maximal solution
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to (2.3) with initial values

ξ(0) = p1(0) = x0, pk(0) = pk, 2 ≤ k ≤ N.

Moreover, we require that

p1(t) > ξ(t), 0 < t < T . (2.4)

It is known that the solution exists, and (ξ(t)) is also an (Ft )-semi-martingale with
d〈ξ 〉t = κ dt . The chordal Loewner trace driven by ξ(t), 0 ≤ t < T , is called a chordal
SLE(κ;ρ1, . . . , ρN) trace started from (x0;x+

0 ,p2, . . . , pN). If the “>” in (2.4) is replaced
by “<”, then we get a chordal SLE(κ;ρ1, . . . , ρN) trace started from (x0;x−

0 ,p2, . . . , pN).
If the only degenerate force points are p1 = x+

0 and p2 = x−
0 , let ξ(t) and pk(t), 1 ≤ k ≤ N ,

0 < t < T , be the maximal solution to (2.3) with initial values

ξ(0) = p1(0) = p2(0) = x0, pk(0) = pk, 3 ≤ k ≤ N

such that

p1(t) > ξ(t) > p2(t), 0 < t < T .

The chordal Loewner trace driven by ξ(t), 0 ≤ t < T , is called a chordal SLE(κ;ρ1, . . . , ρN)

trace started from (x0;x+
0 , x−

0 ,p3, . . . , pN).
For 1 ≤ m ≤ N , the function pm(t), 0 ≤ t < T , is called the force point function started

from pm. Each force point function is determined by its initial point pm and the driving
function ξ(t) as follows. Let ϕ(t, ·), 0 ≤ t < T , be the chordal Loewner maps driven by ξ .
If pm is not degenerate, then from (2.1), we have pm(t) = ϕ(t,pm), 0 ≤ t < T . If pm = xσ

0 ,
σ ∈ {+,−}, is degenerate, then it is not difficult to see that pm(t) = limx→xσ

0
ϕ(t, x).

The following lemma is a special case of Lemma 2.1 in [10].

Lemma 2.1 Suppose κ ∈ (0,4] and �ρ = (ρ1, . . . , ρN) with
∑N

m=1 ρm = κ − 6. For j = 1,2,
let Kj(t), 0 ≤ t < Tj , be a generic or degenerate chordal SLE(κ; �ρ) process started from
(xj ; �pj ), where �pj = (pj,1, . . . , pj,N ), j = 1,2. Suppose W is a conformal or conjugate
conformal map from H onto H such that W(x1) = x2 and W(p1,m) = p2,m, 1 ≤ m ≤ N .
Then (W(K1(t)),0 ≤ t < T1) has the same law as (K2(t),0 ≤ t < T2) up to a time-change.
A similar result holds for the traces.

The following lemma is a special case of Theorem 3.2 in [10].

Lemma 2.2 Suppose κ ∈ (0,4], ρ ≥ (κ − 4)/2, and β(t), 0 ≤ t < ∞, is a chordal
SLE(κ;ρ) trace started from (0;0σ ), where σ ∈ {+,−}. Then a.s. limt→∞ β(t) = ∞.

From Lemma 2.1 and Lemma 2.2, we obtain the following lemma.

Lemma 2.3 Let κ ∈ (0,4], ρ ≥ (κ − 4)/2, and x1 �= x2 ∈ R. Suppose β(t), 0 ≤ t < T , is a
chordal SLE(κ;ρ,κ − 6 − ρ) trace started from (x1;xσ

1 , x2), where σ ∈ {+,−}. Then a.s.
limt→T − β(t) = x2.

Proof Let β0(t), 0 ≤ t < ∞, be a chordal SLE(κ;ρ) trace started from (0;0+). From
Lemma 2.2, a.s. limt→∞ β0(t) = ∞. We may find W that maps H conformally or conjugate
conformally onto H such that W(0) = x1, W(∞) = x2, and W(0+) = xσ

1 . From Lemma 2.1,
after a time-change, W(β0(t)), 0 ≤ t < ∞, has the same distribution as β(t), 0 ≤ t < T .
Thus, a.s. limt→T − β(t) = W(∞) = x2. �
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3 Intermediate SLE(κ;ρ) Process

Lemma 3.1 For κ ∈ (0,4) and ρ ≥ (κ −4)/2, let a = 2ρ

κ
, b = 1− 4

κ
< 0, and c = 2ρ+4

κ
≥ 1.

For x ∈ (−1,1), let U0(x) = 2F1(a, b; c;x), where 2F1 is the hypergeometric function [6].

Then there are C2 > C1 > 0 such that C1 ≤ U0(x) ≤ C2 on [0,1). Let f0(x) = U ′
0(x)

U0(x)
on

[0,1). Then f0 is also bounded on [0,1), f0(x) ≥ b
1−x

for 0 ≤ x < 1, and limx→1− f0(x) =
− a

2 .

Proof It is known [6] that U0 is analytic and satisfies the Gaussian hypergeometric equation:

x(x − 1)U ′′
0 (x) + [(a + b + 1)x − c]U ′

0(x) + abU0(x) = 0. (3.1)

Moreover, we have U0(0) = 1 > 0 and f ′
0(0) = U ′

0(0) = ab
c

. Let z0 = sup{x ∈ (0,1) :
U0(x) �= 0}. Then z0 ∈ (0,1] and f0 is analytic on [0, z0). Let h0(x) = f0(x) − b

1−x
=

U ′
0(x)

U0(x)
− b

1−x
on [0, z0). Then h0(0) = ab

c
− b = −4b

2ρ+4 > 0. From (3.1) and that b + c − a = 1,
we find that for x ∈ [0, z0), h0(x) satisfies

xh′
0(x) + xh0(x)2 + ch0(x) + b(1 − b)

(1 − x)2
= 0. (3.2)

Assume that there is x1 ∈ [0, z0) such that h0(x1) ≤ 0. Since h0(0) > 0, so x1 > 0 and
there is x0 ∈ (0, z0) such that h0(x0) = 0 and h0(x) > 0 for x ∈ [0, x0). Then we have
h′

0(x0) ≤ 0. However, since b < 0, from (3.2) we have h′
0(x0) > 0, which is a contradic-

tion. Thus h0(x) > 0 for all x ∈ [0, z0). So we have f0(x) > b
1−x

for 0 ≤ x < z0. Assume
that z0 < 1. Then z0 is a zero of U0, so z0 is a simple pole of f0, and the residue is posi-
tive. Thus, limx→z−

0
f0(x) = −∞, which contradicts that f0(x) > b

1−x
for 0 ≤ x < z0. Thus,

z0 = 1. So U0(x) �= 0 and f0(x) > b
1−x

for 0 ≤ x < 1. Since U0(0) = 1 > 0, so U0(x) > 0 on
[0,1).

Now U0 and f0 are continuous on [0,1), and U0(x) > 0 on [0,1). To complete the proof,
we suffice to show that limx→1− U0(x) and limx→1− f0(x) both exist and are finite, and
limx→1− U0(x) > 0. One may check that c, c − a, c − b and c − a − b are all positive. So
from [6],

lim
x→1− U0(x) = 	(c)	(c − a − b)

	(c − a)	(c − b)
∈ (0,∞). (3.3)

We have U ′
0(x) = ab

c 2F1(a + 1, b + 1; c + 1;x). One may check that c + 1 and (c + 1) −
(a + 1) − (b + 1) are both positive. So from [6] again,

lim
x→1− U ′

0(x) = ab

c
· 	(c + 1)	(c − a − b − 1)

	(c − a)	(c − b)
. (3.4)

From (3.3) and (3.4), we have limx→1− f0(x) = ab
c−a−b−1 = − a

2 , which is finite. �

From now on, fix κ ∈ (0,4) and ρ ≥ (κ − 4)/2. Let f0 be given by Lemma 3.1. Let

g0(x) := ρ + κxf0(x). (3.5)

From Lemma 3.1, g0 is bounded on [0,1), limx→1− g0(x) = 0, and for 0 ≤ x < 1,

g0(x) ≥ ρ + (κ − 4)
x

1 − x
. (3.6)
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For 0 < p1 < p2, let

J (p1,p2) := −
(

1

p1
− 1

p2

)

g0

(

p1

p2

)

. (3.7)

From (3.6) and that ρ ≥ κ/2 − 2, we have

J (p1,p2) ≤ ρ

p2
− ρ

p1
+ 4 − κ

p2
≤ 2 − κ/2

p1
+ 2 − κ/2

p2
. (3.8)

Let 0 < p1 < p2. Let B(t) be a Brownian motion. Let J (·, ·) be defined by (3.7). Let
ξ(t), p1(t) and p2(t), 0 ≤ t < T , be the maximal solution to

{

dξ(t) = √
κ dB(t) + J (p1(t) − ξ(t),p2(t) − ξ(t)) dt,

dp1(t) = 2dt
p1(t)−ξ(t)

, dp2(t) = 2dt
p2(t)−ξ(t)

,
(3.9)

with initial values

ξ(0) = 0, pj (0) = pj , j = 1,2.

We call the chordal Loewner trace β(t), 0 ≤ t < T , driven by ξ , a (generic) intermediate
SLE(κ;ρ) trace with force points p1 and p2. Note that ξ(t) < p1(t) < p2(t) for 0 ≤ t < T .
If T < ∞, we must have limt→T − p1(t) − ξ(t) = 0. Thus, if lim supt→T − p1(t) − ξ(t) > 0,
then T = ∞.

Theorem 3.1 Let β(t), 0 ≤ t < T , be an intermediate SLE(κ;ρ) trace. Then a.s. T = ∞,
which means that ∞ is a subsequential limit of β(t) as t → T −.

Proof Let ξ(t), 0 ≤ t < T , be the driving function for β . Then there are p1(t), p2(t) and
some Brownian motion B(t) such that (3.9) holds, and [0, T ) is the maximal interval of the
solution. Let Xj(t) = pj (t) − ξ(t), j = 1,2. Then 0 < X1(t) < X2(t), 0 ≤ t < T ; and for
j = 1,2, Xj satisfies the SDE

dXj (t) = −√
κ dB(t) +

(

2

Xj(t)
− J (X1(t),X2(t))

)

dt.

From Itô’s formula ([7]), for j = 1,2, we have

d ln(Xj (t)) = −
√

κ

Xj (t)
dB(t) +

(

2 − κ/2

Xj(t)2
− J (X1(t),X2(t))

Xj (t)

)

dt. (3.10)

Thus, we have

d(ln(X2(t)/X1(t))) =
( √

κ

X1(t)
−

√
κ

X2(t)

)

dB(t) −
(

2 − κ/2

X1(t)2
− 2 − κ/2

X2(t)2

)

dt

+
(

1

X1(t)
− 1

X2(t)

)

J (X1(t),X2(t)) dt.

Since 1/X1(t) > 1/X2(t) and 2 −κ/2 > 0, so from (3.8), the drift term for ln(X2(t)/X1(t))

is not positive. Note that ln(X2(t)/X1(t)) is always positive. So (ln(X2(t)/X1(t))) is a su-
permartingale. Thus, a.s. limt→T − ln(X2(t)/X1(t)) exists and is finite. So a.s.

∫ T

0

( √
κ

X1(t)
−

√
κ

X2(t)

)2

dt = lim
t→T −〈ln(X2/X1)〉t < ∞. (3.11)
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Let E1 denote the event that limt→T − ln(X2(t)/X1(t)) > 0. Assume that E1 occurs. From
(3.11), we have a.s.

∫ T

0 X1(t)
−2 dt < ∞. From (3.7) and (3.10), we have

d ln(X1(t)) = −
√

κ

X1(t)
dB(t) + 1

X1(t)2

[

2 − κ

2
+

(

1 − X1(t)

X2(t)

)

g0

(

X1(t)

X2(t)

)]

dt. (3.12)

Since a.s.
∫ T

0 X1(t)
−2 dt < ∞, and g0 is bounded on [0,1), so a.s.

∫ T

0

1

X1(t)2

∣

∣

∣

∣

2 − κ

2
+

(

1 − X1(t)

X2(t)

)

g0

(

X1(t)

X2(t)

)∣

∣

∣

∣

dt < ∞.

From (3.12) we have a.s. limt→T − ln(X1(t)) exists and is finite. Thus, on E1 a.s.
limt→T − X1(t) exists and is positive, which implies that T = ∞.

Let E2 denote the event that limt→T − ln(X2(t)/X1(t)) = 0. Assume that E1 occurs.
Then limt→T − X1(t)/X2(t) = 1, so limt→T − g0(X1(t)/X2(t)) = limx→1− g0(x) = 0. Since
2 − κ/2 > 0, so the drift term in (3.12) is positive when t is close to T . From (3.12), a.s.
lim supt→T − ln(X1(t)) > −∞, which implies that lim supt→T − X1(t) > 0. So we have a.s.
T = ∞ on the event E2.

Since E1 ∪ E2 is a.s. the whole probability space, so a.s. T = ∞. Suppose T = ∞. Since
for any 0 < t < ∞, the half-plane capacity of β((0, t]) is 2t , so the diameter of β((0, t]) is
at least

√
2t . Thus, the diameter of β((0,∞)) is infinite, so ∞ is a subsequential limit of

β(t) as t → T −. �

The above theorem still holds if the force points p1 and p2 are random points, and the
joint distribution of p1 and p2 is independent of the Brownian motion B(t). The argument
in the above proof still works.

We may let the force point p1 be 0+, and define the degenerate intermediate SLE(κ;ρ)

trace. The definition is as follows. Fix p2 > 0. Let ξ(t), p1(t) and p2(t) solve (3.9) for
0 < t < T , with initial values

ξ(0) = p1(0) = 0, p2(0) = p2. (3.13)

Moreover, we require that

ξ(t) < p1(t), 0 < t < T . (3.14)

The chordal Loewner trace β(t), 0 ≤ t < T , driven by ξ , is called a degenerate intermediate
SLE(κ;ρ) trace with force points 0+ and p2.

We claim that the solution to (3.9) together with (3.13) and (3.14) a.s. exists. For the
proof, we suffice to prove that the solution exists on (0, T0) for some stopping time T0 > 0
because after T0 we are dealing with some generic case with random force points. Let ˜B(t)

be a Brownian motion under some probability measure P. Let ξ(t), p1(t) and p2(t), 0 < t <

T1, be the maximal solution to
{

dξ(t) = √
κ d˜B(t) + ρ

ξ(t)−p1(t)
dt,

dpj (t) = 2dt
pj (t)−ξ(t)

, j = 1,2,

such that (3.13) and (3.14) hold. The solution a.s. exists because ξ is the driving function
for an SLE(κ;ρ) process started from (0,0+).

From (3.5) and (3.7), it is clear that limp1→0+(J (p1,p2) + ρ

p1
) = ρ

p2
− κ

p2
f0(0). Define

Z(t), 0 ≤ t < T1, such that for t > 0, Z(t) = J (p1(t) − ξ(t),p2(t) − ξ(t)) − ρ

ξ(t)−p1(t)
, and
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Z(0) = ρ

p2
− κ

p2
f0(0). Then Z(t) is continuous on [0, T1). From the Girsanov’s Theorem,

there is a stopping time T0 ∈ (0, T1) such that under some other probability measure Q,
B(t) := ˜B(t) − 1√

κ

∫ t

0 Z(s) ds, 0 ≤ t < T0, is a partial Brownian motion, which means that
B(t) could be extended to a full Brownian motion. Then we have

dξ(t) = √
κ dB(t) + J (p1(t) − ξ(t),p2(t) − ξ(t)) dt, 0 ≤ t < T0.

Thus, the solution to (3.9) with (3.13) and (3.14) a.s. exists on (0, T0). Then the solution
can be extended to the maximal interval, say (0, T ), and so we have the existence of the
maximal solution. From Theorem 3.1, we get the following corollary.

Corollary 3.1 Let β(t), 0 ≤ t < T , be a degenerate intermediate SLE(κ;ρ) trace. Then a.s.
T = ∞, which means that ∞ is a subsequential limit of β(t) as t → T −.

4 Martingales

Fix κ ∈ (0,4) and ρ ≥ κ/2 − 2. Let x1 < x2 ∈ R, σ1 = + and σ2 = −. Throughout this
section, the subscripts j and k will be any of the two numbers: 1 or 2, such that j and
k are different. Let ξj (t), 0 ≤ t < Tj , be the driving function for a chordal SLE(κ;ρ,κ −
6 − ρ) trace βj (t), 0 ≤ t < Tj , started from (xj ;xσj

j , xk). From Lemma 2.3, we have a.s.
limt→T −

j
βj (t) = xk . Let ϕj (t, ·) and Kj(t), 0 ≤ t < Tj , be the chordal Loewner maps and

hulls driven by ξj . Let pj (t) and qj (t) be the force point functions started from x
σj

j and xk ,
respectively. So we have pj (t) = lim

x→x
σj
j

ϕj (t, x) and qj (t) = ϕj (t, xk). For 0 ≤ t < T , let

Bj(t) = 1√
κ

(

ξj (t) − xj −
∫ t

0

ρ

ξj (s) − pj (s)
ds +

∫ t

0

κ − 6 − ρ

ξj (s) − qj (s)
ds

)

.

Then Bj(t), 0 ≤ t < T , is a partial Brownian motions. Let (F j
t ) be the filtration generated

by Bj(t). Then (ξj (t)), pj (t), and (qj (t)) are all (Ft )-adapted. And (ξj (t)) is an (Ft )-semi-
martingale with d〈ξ 〉t = κ dt . Moreover, ξj (t), pj (t) and qj (t), 0 < t < Tj , are the maximal
solution to the following equations

dξj (t) = √
κ dBj (t) + ρ

ξj (t) − pj (t)
dt + κ − 6 − ρ

ξj (t) − qj (t)
dt, (4.1)

dpj (t) = 2

pj (t) − ξj (t)
dt, (4.2)

dqj (t) = 2

qj (t) − ξj (t)
dt, (4.3)

with initial values

ξj (0) = pj (0) = xj , qj (0) = xk; (4.4)

and they satisfy the inequalities

ξ1(t) < p1(t) < q1(t), 0 < t < T1; ξ2(t) > p2(t) > q2(t), 0 < t < T2. (4.5)
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Now suppose that (ξ1(t)) and (ξ2(t)) are independent. Then (B1(t)) and (B2(t)) are also
independent. So for any fixed (F k

t )-stopping time tk with 0 ≤ tk < Tk , Bj(t), 0 ≤ t < Tj , is
a partial (F j

t × F k
tk
)t≥0-Brownian motion.

Differentiating (2.1) w.r.t. ∂z and plugging ξ = ξj and z = xk , we find that for 0 ≤ t < Tj ,

d∂zϕj (t, xk)

∂zϕj (t, xk)
= −2dt

(qj (tj ) − ξj (tj ))2
. (4.6)

From (4.1)–(4.3) we have that, for 0 < t < Tj ,

d(ξj (t) − pj (t))

ξj (t) − pj (t)
= dξj (t)

ξj (t) − pj (t)
+ 2dt

(ξj (t) − pj (t))2
; (4.7)

d(ξj (t) − qj (t))

ξj (t) − qj (t)
= dξj (t)

ξj (t) − qj (t)
+ 2dt

(ξj (t) − qj (t))2
; (4.8)

d(qj (t) − pj (t))

qj (t) − pj (t)
= −2dt

(ξj (t) − qj (t))(ξj (t) − pj (t))
. (4.9)

In the above equations, (4.6) and (4.9) are ODEs, (4.7) and (4.8) are (F j
t )-adapted SDEs.

For t ∈ (0, Tj ), define

rj (t) = |ξj (t)−pj (t)|− ρ
κ |ξj (t)− qj (t)|− κ−6−ρ

κ |qj (t)−pj (t)|− ρ(κ−6−ρ)
2κ ∂zϕj (t, xk)

(ρ+2)(κ−6−ρ)
4κ .

(4.10)
From (4.1), (4.6)–(4.9) and Itô’s formula, we have that, for t > 0,

drj (t)

rj (t)
= − ρ

ξj (t) − pj (t)
· dBj (t)√

κ
− κ − 6 − ρ

ξj (t) − qj (t)
· dBj (t)√

κ
+ ρ(κ − 4 − ρ)/(2κ)

(ξj (t) − pj (t))2
dt.

(4.11)
Let D = {(t1, t2) ∈ [0, T1) × [0, T2) : β1([0, t1]) ∩ β2([0, t2]) = ∅}. Then for any

(t1, t2) ∈ D, K1(t1) ∪ K2(t2) is a hull in H w.r.t. ∞. For (t1, t2) ∈ D, let

Kk,tj (tk) := (Kj (tj ) ∪ Kk(tk))/Kj (tj ) = ϕj (tj ,Kk(tk)), (4.12)

and ϕk,tj (tk, ·) := ϕKk,tj
(tk ). Then Kk,tj (tk) is the image of a curve in H started from

ϕj (tj , xk) = qj (tj ). And for any z ∈ H \ (K1(t1) ∪ K2(t2)),

ϕK1(t1)∪K2(t2)(z) = ϕ1,t2(t1, ϕ2(t2, z)) = ϕ2,t1(t2, ϕ1(t1, z)). (4.13)

Define Aj,h, h ∈ Z≥0, on D such that Aj,h(t1, t2) = ∂h
z ϕk,tj (tk, ξj (tj )). Note that the de-

finition of Aj,h here agrees with the definition of Aj,h in Sect. 4.2 of [10]. From now on,
we fix tk to be some (F k

t )-stopping time that lies on [0, Tk), and consider the filtration
(F j

tj
× F k

tk
)tj ≥0. Since Bj(t) and Bk(t) are independent Brownian motions, so Bj(tj ) is an

(F j
tj

× F k
tk
)tj ≥0-Brownian motion. We use ∂j to denote the partial derivative w.r.t. tj . The

following equations are (4.10) and (4.12) in [10], where (4.14) is an (F j
tj

× F k
tk
)tj ≥0-adapted

SDE.

∂jAj,0 = Aj,1∂ξj (tj ) +
(

κ

2
− 3

)

Aj,2∂tj ; (4.14)

∂jAk,0 = 2A2
j,1

Ak,0 − Aj,0
,

∂jAk,1

Ak,1
= −2A2

j,1

(Ak,0 − Aj,0)2
. (4.15)
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We now use ∂1 and ∂z to denote the partial derivatives of ϕj,t0(·, ·) w.r.t. the first (real)
and second (complex) variables, respectively, inside the bracket; and use ∂0 to denote the
partial derivative of ϕj,t0(·, ·) w.r.t. the subscript t0. Let (t1, t2) ∈ D. The following equations
are (3.9) and (3.15) in [9].

∂1ϕj,tk (tj , z) = 2A2
j,1

ϕj,tk (tj , z) − Aj,0
, z ∈ H \ Kj,tk (tj ); (4.16)

∂0ϕk,tj (tk, z) = 2A2
j,1

ϕk,tj (tk, z) − Aj,0
− 2∂zϕk,tj (tk, z)

z − ξj (tj )
, z ∈ H \ Kk,tj (tk). (4.17)

Since Kj,tk (tj ) ∩ R = {qk(tk)} and Kk,tj (tk) ∩ R = {qj (tj )}, so after continuation, (4.16)
also holds for any z ∈ R \ {qk(tk)}, and (4.17) also holds for any z ∈ R \ {ξj (tj ), qj (tj )}.
Differentiating (4.17) w.r.t. ∂z, we find that for (t1, t2) ∈ D, and z ∈ R \ {ξj (tj ), qj (tj )},

∂0∂zϕk,tj (tk, z) = − 2A2
j,1∂zϕk,tj (tk, z)

(ϕk,tj (tk, z) − Aj,0)2
− 2∂2

z ϕk,tj (tk, z)

z − ξj (tj )
+ 2∂zϕk,tj (tk, z)

(z − ξj (tj ))2
. (4.18)

Define Bj,0 on D such that Bj,0(t1, t2) = ϕk,tj (tk,pj (tj )). Since ξ1(0) = p1(0) and
ξ1(t) < p1(t) for t > 0, so A1,0(0, t2) = B1,0(0, t2) and A1,0(t1, t2) < B1,0(t1, t2) if t1 > 0.
Similarly, we have A2,0(t1,0) = B2,0(t1,0) and A2,0(t1, t2) > B2,0(t1, t2) if t2 > 0. Choose
any y1 < y2 ∈ (x1, x2). Then p1(t1) ≤ ϕ1(t1, y1) < ϕ2(t1, y2) for any t1 ∈ [0, T1). From (4.13)
we have

B1,0(t1, t2) ≤ ϕK1(t1)∪K2(t2)(y1) < ϕK1(t1)∪K2(t2)(y2)

for any (t1, t2) ∈ D. Similarly, B2,0(t1, t2) ≥ ϕK1(t1)∪K2(t2)(y2) > ϕK1(t1)∪K2(t2)(y1) for any
(t1, t2) ∈ D. Thus, B1,0 < B2,0 on D. So in general, A1,0 ≤ B1,0 < B2,0 ≤ A2,0, where
A1,0 = B1,0 iff t1 = 0, and B2,0 = A2,0 iff t2 = 0.

Let (t1, t2) ∈ D. Since pk(tk) �= qk(tk), so we may apply (4.16) with z = pk(tk), and obtain

∂jBk,0 = 2A2
j,1

Bk,0 − Aj,0
. (4.19)

Now suppose tj > 0. Then pj (tj ) ∈ R \ {ξj (tj ), qj (tj )}. So we may apply (4.17) with z =
pj (tj ), and use (4.2) and chain rule to obtain

∂jBj,0 = 2A2
j,1

Bj,0 − Aj,0
. (4.20)

Note that (4.19) and (4.20) have the same forms as the formula for ∂jBm,0 in (4.13) in [10].
But here we require that tj > 0 in (4.20).

Let Ej,0 = Aj,0 − Ak,0 = −Ek,0 �= 0, Ej,m = Aj,0 − Bm,0, m = 1,2, and Cj,k = Bj,0 −
Bk,0 = −Ck,j �= 0. From (4.14)–(4.15) and (4.19)–(4.20), we obtain the following formulas,
which have the same forms as (4.14) and (4.15) in [10].

∂jEj,m

Ej,m

= Aj,1

Ej,m

∂ξj (tj ) +
((

κ

2
− 3

)

· Aj,2

Ej,m

+ 2 · A2
j,1

E2
j,m

)

∂tj , m = 0,1,2; (4.21)

∂jEk,m

Ek,m

= −2A2
j,1

Ej,0Ej,m

∂tj , m = 1,2; (4.22)
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∂jCj,k

Cj,k

= −2A2
j,1

Ej,1Ej,2
∂tj . (4.23)

Here we require that tj > 0 in the SDEs for ∂jEj,j , ∂jEk,j , and ∂jCj,k , because (4.20) does
not hold for tj = 0.

Define ˜Bj,1 on D such that ˜Bj,1(t1, t2) = ∂zϕk,tj (tk,pj (tj )). Differentiating (4.16) w.r.t.
∂z and plugging z = pk(tk), we get

∂j
˜Bk,1

˜Bk,1
= −2A2

j,1

E2
j,k

∂tj . (4.24)

Applying (4.18) with z = pj (tj ), and using (4.2) and chain rule, we find that, for tj > 0,

∂j
˜Bj,1

˜Bj,1
= −2A2

j,1

E2
j,j

∂tj + 2

(pj (tj ) − ξj (tj ))2
∂tj . (4.25)

Let D = ˜B1,1 ˜B2,1

C2
1,2

= ˜B1,1 ˜B2,1

C2
2,1

. From (4.23)–(4.25), we find that, for tj > 0,

∂jD

D
= −2

(

A1,1

Ej,j

− A1,1

Ej,k

)2

∂tj + 2

(pj (tj ) − ξj (tj ))2
∂tj . (4.26)

Let D′ = {(t1, t2) ∈ D : t1 ∗ t2 �= 0}. Define R on D such that R = E1,1E2,2
E1,2E2,1

= Ej,j Ek,k

Ej,kEk,j
.

From A1,0 ≤ B1,0 < B2,0 ≤ A2,0 we have |Ej,j | < |Ej,k| and Ej,j /Ej,k ≥ 0, so R ∈ [0,1).
Since Aj,0 �= Bj,0 when tj > 0, so E1,1 ∗ E2,2 �= 0 on D′. Thus, R ∈ (0,1) on D′. Since
Ek,m = Ej,m − Ej,0 for m = 1,2, so we have

R + 1

R − 1
= 2/Ej,0

1/Ej,j − 1/Ej,k

− 1/Ej,j + 1/Ej,k

1/Ej,j − 1/Ej,k

. (4.27)

From (4.21) and (4.22), we have that, for tj > 0,

∂jR = R

(

Aj,1

Ej,j

− Aj,1

Ej,k

)

∂ξj (tj ) + R

[(

κ

2
− 3

)(

Aj,2

Ej,j

− Aj,2

Ej,k

)

+ κ

2

(

Aj,1

Ej,j

− Aj,1

Ej,k

)2

+
(

2 − κ

2

)(

A2
j,1

E2
j,j

− A2
j,1

E2
j,k

)

+
(

2A2
j,1

Ej,0Ej,j

− 2A2
j,1

Ej,0Ej,k

)]

∂tj . (4.28)

Let U0(x) and f0(x) be given by Lemma 3.1. Let g0 be defined by (3.5). For x ∈ (0,1), let
V0(x) := x

ρ
κ U0(x). From (3.1) and (3.5), we find that V0(x) satisfies

x
V ′

0(x)

V0(x)
= g0(x)

κ
, (4.29)

κ

2

V ′′
0 (x)

V0(x)
x2 =

[(

2 − κ

2

)

x + 1

x − 1
− κ

2

]

g0(x)

κ
− ρ(κ − 4 − ρ)

2κ
. (4.30)

Since R ∈ (0,1) on D′, so V0(R) is well defined on D′. From (4.27)–(4.30), we have that

∂jV0(R)

V0(R)
= g0(R)

κ

(

Aj,1

Ej,j

− Aj,1

Ej,k

)

∂ξj (tj ) + g0(R)

κ

(

κ

2
− 3

)[(

Aj,2

Ej,j

− Aj,2

Ej,k

)
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−
(

2A2
j,1

Ej,0Ej,j

− 2A2
j,1

Ej,0Ej,k

)]

∂tj

− ρ(κ − 4 − ρ)

2κ

(

Aj,1

Ej,k

− Aj,1

Ej,j

)2

∂tj . (4.31)

Define N and F on D such that N = A1,1A2,1

(A1,0−A2,0)2 and F(t1, t2) =
exp(

∫ t2
0

∫ t1
0 2N(s1, s2) ds1 ds2). Let α = 6−κ

2κ
and λ = (8−3κ)(6−κ)

2κ
. The following equations

are (4.13) in [9] and (4.25) in [10].

∂jN
α

Nα
= 1

κ

(

3 − κ

2

)(

Aj,2

Aj,1
− 2Aj,1

Ej,0

)

∂ξj (tj ) + λ

(

1

4
· A2

1,2

A2
1,1

− 1

6
· A1,3

A1,1

)

∂tj ; (4.32)

∂jF
−λ

F−λ
= −λ

(

1

4
· A2

j,2

A2
j,1

− 1

6
· Aj,3

Aj,1

)

∂tj . (4.33)

Let τ = (ρ+2)(κ−6−ρ)

2κ
and δ = − ρ(κ−4−ρ)

4κ
. Define M on D′ such that

M = |x1 − x2|τ r1(t1)r2(t2)D
δV0(R)NαF−λ. (4.34)

From (4.1), (4.11), (4.26) and (4.31)–(4.33), we get

∂jM

M
=

[(

3 − κ

2

)(

Aj,2

Aj,1
− 2Aj,1

Ej,0

)

+ g0(R)

(

Aj,1

Ej,j

− Aj,1

Ej,k

)

− ρ

ξj (tj ) − pj (tj )
− κ − 6 − ρ

ξj (tj ) − qj (tj )

]

dBj (tj )√
κ

. (4.35)

Define r̃j on [0, Tj ) such that

r̃j (tj ) = |ξj (tj ) − qj (tj )|− κ−6−ρ
κ |qj (tj ) − pj (tj )|− ρ(κ−6−ρ)

2κ ∂zϕj (tj , x3−j )
(ρ+2)(κ−6−ρ)

4κ . (4.36)

Define ˜M on D such that

˜M = |x1 − x2|τ r̃1(t1)̃r2(t2)D
δ|E1,2E2,1|− ρ

κ U0(R)NαF−λ. (4.37)

Then ˜M is continuous on D. Define Lj on D such that if tj = 0 then Lj = ∂zϕk(tk, xj ); if
tj > 0 then

Lj(t1, t2) = |Ej,j (t1, t2)|
|ξj (tj ) − pj (tj )| = ϕk,tj (tk, ξj (tj )) − ϕk,tj (tk,pj (tj ))

ξj (tj ) − pj (tj )
. (4.38)

Here the second “=” holds because Ej,j has the same sign as ξj (tj ) − pj (tj ). Since
limtk→0+ ξk(tk) = limtk→0+ pk(tk) = xk and limtj →0+ ϕk,tj (tk, ·) = ϕk,0(tk, ·) = ϕk(tk, ·), so

Lj is continuous on D. From (4.10), (4.34), (4.36)–(4.38), and that V0(x) = x
ρ
κ U0(x), we

find that M = ˜ML
ρ
κ

1 L
ρ
κ

2 on D′. Thus M has continuous extension to D. Now we check the
value of M when tj = 0.

We have ξj (0) = pj (0) = xj , qj (0) = xk , and Kj(0) = ∅. So Kj(0) ∪ Kk(tk) = Kk(tk).
From (4.12) we have Kk,0(tk) = Kk(tk) and Kj,tk (0) = ∅, which implies that ϕk,0(tk, ·) =
ϕk(tk, ·) and ϕj,tk (0, ·) = id. Thus, if tj = 0, then r̃j (tj ) = |xj − xk|−τ ; and Aj,0 =
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ϕk(tk, xj ) = qk(tk) = Bj,0, Aj,1 = ∂zϕk(tk, xj ) = ˜Bj,1, Aj,2 = ∂2
z ϕk(tk, xj ), Ak,0 = ξk(tk),

Bk,0 = pk(tk), and Ak,1 = 1 = ˜Bk,1, which imply that Ej,j = 0, Ej,k = qk(tk) − pk(tk),
Ek,0 = Ek,j = ξk(tk) − qk(tk) = −Ej,0, Ek,k = ξk(tk) − pk(tk), |Cj,k| = |pk(tk) − qk(tk)|,
D = ∂zϕk(tk ,xj )

(pk(tk)−qk(tk))2 , R = 0, U0(R) = 1, N = ∂zϕk(tk ,xj )

(ξk(tk )−qk(tk))2 , and F = 1. From (4.36), (4.37)

and the above argument, we find that ˜M = ∂zϕk(tk, xj )
− ρ

κ when tj = 0. From the definition,
Lj = ∂zϕk(tk, xj ) when tj = 0. Since ϕj,tk (0, ·) = id, so Lk = 1 when tj = 0. Thus, after
continuous extension, M = 1 when t1 or t2 equals 0.

Let Qj be the formula inside the square bracket in (4.35), that is,

Qj =
(

3 − κ

2

)(

Aj,2

Aj,1
− 2Aj,1

Ej,0

)

+ g0(R)

(

Aj,1

Ej,j

− Aj,1

Ej,k

)

− ρ

ξj (tj ) − pj (tj )
− κ − 6 − ρ

ξj (tj ) − qj (tj )
. (4.39)

Then Qj is defined on D′. Using the observation in the previous paragraph and the fact that
g0(0) = ρ and g0 is differentiable at 0, we may check that Qj has continuous extension to

D. Thus, after continuous extensions, the formula
∂j M

M
= Qj

dBj (tj )√
κ

holds in D. For each tk ∈
[0, Tk), let Tj (tk) be the maximal number such that Kj(t) ∩ Kk(tk) = ∅ for 0 ≤ t < Tj (tk).
From (4.35) we conclude that for any fixed stopping time tk ∈ [0, Tk), M is a continuous
local martingale in tj , where tj ranges in [0, Tj ).

Let HP denote the set of (H1,H2) such that for j = 1,2, Hj is a hull in H w.r.t. ∞ that
contains some neighborhood of xj in H, and H1 ∩ H2 = ∅. For (H1,H2) ∈ HP, let Tj (Hj )

be the first t such that βj (tj ) ∈ H \ Hj . Then Tj (Hj ) is an (F j
t )-stopping time.

Theorem 4.1 For any (H1,H2) ∈ HP, there are C2 > C1 > 0 depending on H1 and H2 such
that C1 ≤ M(t1, t2) ≤ C2 for (t1, t2) ∈ [0, T1(H1)] × [0, T2(H2)].

Proof Since M = ˜ML
ρ
κ

1 L
ρ
κ

2 , so we suffice to show that the theorem holds for ˜M and Lj ,
j = 1,2. To check the boundedness of ˜M , we suffice to show that the theorem holds for
every factor on the right-hand side of (4.37). From Lemma 3.1, we find that the theorem
holds for U0(R). The boundedness of other factors in (4.37) can be proved using the method
in Sect. 5 of [9]. For the boundedness of Lj , we suffice to note that from Lemma 5.2 in
[9], the value of Lj lies between Aj,1 and ˜Bj,1, which are both uniformly bounded from ∞
and 0. �

Fix (H1,H2) ∈ HP. From the local martingale property of M and the above theorem, we
see that E[M(T1(H1), T2(H2))] = 1. Let μ denote the joint distribution of (ξ1(t),0 ≤ t < T1)

and (ξ2(t),0 ≤ t < T2). Define ν such that dν/dμ = M(T1(H1), T2(H2)). Then ν is also a
probability measure. Suppose temporarily that the joint distribution of ξ1 and ξ2 is ν instead
of μ. For (t1, t2) ∈ D, define

B1,t2(t1) = B1(t1) − 1√
κ

∫ t1

0
Q1(s, t2) ds,

B2,t1(t2) = B2(t2) − 1√
κ

∫ t2

0
Q2(t1, s) ds.

(4.40)
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Fix an (F k
t )-stopping time t̄k with t̄k ≤ Tk(Hk). Since Bj(t) is an (F j

t × F k
t̄k
)t≥0-Brownian

motion under μ, so from (4.35), (4.39) and the Girsanov’s Theorem, Bj,t̄k (t), 0 ≤ t ≤
Tj (Hj ), is a partial (F j

t × F k
t̄k
)t≥0-Brownian motion under ν.

The following theorem is Theorem 6.1 in [9] and Theorem 4.5 in [10]. It can be proved
using the above theorem and the argument in [9] or [10].

Theorem 4.2 For any (Hm
1 ,Hm

2 ) ∈ HP, 1 ≤ m ≤ n, there is a continuous function M∗(t1, t2)
defined on [0,∞]2 that satisfies the following properties: (i) M∗ = M on [0, T1(H

m
1 )] ×

[0, T2(H
m
2 )] for m = 1, . . . , n; (ii) M∗(t,0) = M∗(0, t) = 1 for any t ≥ 0; (iii) M∗(t1, t2) ∈

[C1,C2] for any t1, t2 ≥ 0, where C2 > C1 > 0 are constants depending only on Hm
j ,

j = 1,2, 1 ≤ m ≤ n; (iv) for any (F 2
t )-stopping time t̄2, (M∗(t1, t̄2), t1 ≥ 0) is a bounded con-

tinuous (F 1
t1

× F 2
t̄2
)t1≥0-martingale; and (v) for any (F 1

t )-stopping time t̄1, (M∗(t̄1, t2), t2 ≥ 0)

is a bounded continuous (F 1
t̄1

× F 2
t2
)t2≥0-martingale.

5 Coupling Measures

Let C := ⋃

T ∈(0,∞] C([0, T )). The map T : C → (0,∞] is such that [0, T (ξ)) is the definition
domain of ξ . For t ∈ [0,∞), let Ft be the σ -algebra on C generated by {T > s, ξ(s) ∈ A},
where s ∈ [0, t] and A is a Borel set on R. Then (Ft ) is a filtration on C , and T is an
(Ft )-stopping time. Let F∞ = ∨

t Ft .
For ξ ∈ C , let Kξ(t), 0 ≤ t < T (ξ), denote the chordal Loewner hulls driven by ξ . Let

H be a hull in H w.r.t. ∞. Let TH (ξ) ∈ [0, T (ξ)] be the maximal number such that Kξ(t) ∩
H \ H = ∅ for 0 ≤ t < TH . Then TH is an (Ft )-stopping time. Let CH = {TH > 0}. Then
ξ ∈ CH iff H contains some neighborhood of ξ(0) in H. Define PH : CH → C such that
PH (ξ) is the restriction of ξ to [0, TH (ξ)). Then PH (CH ) = {TH = T }, and PH ◦ PH = PH .
If A is a Borel set on R and s ∈ [0,∞), then

P −1
H ({ξ ∈ C : T (ξ) > s, ξ(s) ∈ A}) = {ξ ∈ CH : TH (ξ) > s, ξ(s) ∈ A} ∈ FT −

H
.

Thus, PH is (FT −
H

, F∞)-measurable on CH . On the other hand, the restriction of FT −
H

to CH

is the σ -algebra generated by {ξ ∈ CH : TH (ξ) > s, ξ(s) ∈ A}, where s ∈ [0,∞) and A is a
Borel set on R. Thus, P −1

H (F∞) agrees with the restriction of FT −
H

to CH .

Let ̂C = C ∪ {∞} be the Riemann sphere with spherical metric. Let 	
̂C

denote the space
of nonempty compact subsets of ̂C endowed with Hausdorff metric. Then 	

̂C
is a compact

metric space. Define G : C → 	
̂C

such that G(ξ) is the spherical closure of {t + iξ(t) : 0 ≤
t < T (ξ)}. Then G is a one-to-one map. Let IG = G(C). Let F H

IG
denote the σ -algebra on

IG generated by Hausdorff metric. Let

R = {{z ∈ C : a < Re z < b, c < Im z < d} : a, b, c, d ∈ R}.
Then F H

IG
agrees with the σ -algebra on IG generated by {{F ∈ IG : F ∩ R �= ∅} : R ∈ R}.

Using this result, one may check that G and G−1 (defined on IG) are both measurable with
respect to F∞ and F H

IG
.

Now we adopt the notation in the previous section. Let μj denote the distribution of
(ξj (t),0 ≤ t < Tj ), which is a probability measure on C . Let μ = μ1 × μ2 be a probability
measure on C 2. Since ξ1 and ξ2 are independent, so μ is the joint distribution of ξ1 and ξ2.

Let HP∗ be the set of (H1,H2) ∈ HP such that for j = 1,2, Hj is a polygon whose
vertices have rational coordinates. Then HP∗ is countable. Let (Hm

1 ,Hm
2 ), m ∈ N, be an
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enumeration of HP∗. For each n ∈ N, let Mn∗ (t1, t2) be the M∗(t1, t2) given by Theo-
rem 4.2 for (Hm

1 ,Hm
2 ), 1 ≤ m ≤ n, in the above enumeration. For each n ∈ N define

νn = (νn
1 , νn

2 ) such that dνn/dμ = Mn∗ (∞,∞). From Theorem 4.2, Mn∗ (∞,∞) > 0 and
∫

Mn∗ (∞,∞) dμ = Eμ[Mn∗ (∞,∞)] = 1, so νn is a probability measure on C 2. Since
dνn

1 /dμ1 = Eμ[Mn∗ (∞,∞)|F 1∞] = Mn∗ (∞,0) = 1, so νn
1 = μ1. Similarly, νn

2 = μ2. So each
νn is a coupling of μ1 and μ2.

Let ν̄n = (G × G)∗(νn) be a probability measure on 	2
̂C

. Since 	2
̂C

is compact, so (ν̄n)

has a subsequence (ν̄nk ) that converges weakly to some probability measure ν̄ = (ν̄1, ν̄2) on
	

̂C
× 	

̂C
. Then for j = 1,2, ν̄

nk

j → ν̄j weakly. For n ∈ N and j = 1,2, since νn
j = μj , so

ν̄n
j = G∗(μj ). Thus ν̄j = G∗(μj ), j = 1,2. So ν̄ is supported by I 2

G. Let ν = (ν1, ν2) =
(G−1 × G−1)∗(ν̄) be a probability measure on C 2. Here we use the fact that G−1 is
(F H

IG
, F j

∞)-measurable. For j = 1,2, we have νj = (G−1)∗(ν̄j ) = μj . So ν is also a cou-
pling measure of μ1 and μ2.

The following lemma is Lemma 4.1 in [10]. The proof is similar.

Lemma 5.1 For any n ∈ N, the restriction of ν to F 1
THn

1
× F 2

THn
2

is absolutely continuous

w.r.t. μ, and the Radon-Nikodym derivative is M(THn
1
(ξ1), THn

2
(ξ2)).

Now suppose that the joint distribution of ξ1(t), 0 ≤ t < T1, and ξ2(t), 0 ≤ t < T2, is the
ν in the above lemma instead of μ = μ1 × μ2. Since the distribution of ξj is νj = μj , so
βj (t), 0 ≤ t < Tj , is still a chordal SLE(κ;ρ,κ − 6 − ρ) trace started from (xj ;xσj

j , xk).
Thus, a.s. limt→T −

j
βj (t) = xk . For (t1, t2) ∈ D, let Bj,tk (tj ) be defined by (4.40). Fix an

(F k
t )-stopping time t̄k ∈ [0, Tk). Choose any n ∈ N. Let t̄ nk = t̄k ∧ Tk(H

n
k ). Then t̄ nk is also an

(F k
t )-stopping time, and satisfies t̄ nk ≤ Tk(H

n
k ). From the above lemma and the discussion

after Theorem 4.1, we see that Bj,t̄n
k
(t), 0 ≤ t ≤ Tj (H

n
j ), is a partial (F j

t × F k
t̄n
k
)t≥0-Brownian

motion.

Lemma 5.2 Bj,t̄k (t), 0 ≤ t < Tj (t̄k), is a partial (F j
t × F k

t̄k
)t≥0-Brownian motion.

Proof Write T n
j for Tj (H

n
j ), j = 1,2, n ∈ N. From the above argument, we know that for

any n ∈ N, Bj,t̄n
k
(t ∧ T n

j ), 0 ≤ t < ∞, is a continuous (F j
t × F k

t̄n
k
)t≥0-martingale. Define

Sn
j = T n

j on {t̄k ≤ T n
k }, and Sn

j = 0 on {T n
k < t̄k}. Then for any t ≥ 0, {Sn

j ≤ t} = {T n
k <

t̄k} ∪ {T n
j ≤ t} ∈ F j

t × F k
t̄k

. So Sn
j is an (F j

t × F k
t̄k
)t≥0-stopping time. Now we claim that

Bj,t̄k (t ∧ Sn
j ), 0 ≤ t < ∞, is a continuous (F j

t × F k
t̄k
)t≥0-martingale. Fix s2 ≥ s1 ≥ 0 and

E ∈ F j
s1 × F k

t̄k
. Let E1 = E ∩ {T n

k < t̄k} and E2 = E ∩ {t̄k ≤ T n
k }. Since Sn

j = 0 on E1, so
Bj,t̄k (s2 ∧ Sn

j ) = 0 = Bj,t̄k (s1 ∧ Sn
j ) on E1, which implies that

∫

E1

Bj,t̄k

(

s2 ∧ Sn
j

)

dν = 0 =
∫

E1

Bj,t̄k

(

s1 ∧ Sn
j

)

dν. (5.1)

Since t̄k = t̄ nk on {t̄k ≤ T n
k }, so F k

t̄k
agrees with F k

t̄n
k

on {t̄k ≤ T n
k }. Thus, E2 ∈ F j

s1 × F k
t̄n
k
. Since

t̄k = t̄ nk and Sn
j = T n

j on E2, so from the martingale property of Bj,t̄n
k
(t ∧ T n

j ), we have

∫

E2

Bj,t̄k

(

s2 ∧ Sn
j

)

dν =
∫

E2

Bj,t̄k

(

s1 ∧ Sn
j

)

dν. (5.2)
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Since E is the disjoint union of E1 and E2, so from (5.1) and (5.2), Eν[Bj,t̄k (s2 ∧ Sn
j )|F j

s1 ×
F k

t̄k
] = Bj,t̄k (s1 ∧ Sn

j ). So the claim is justified.
Since the above claim holds for any n ∈ N, so Bj,t̄k (t), 0 ≤ t <

∨∞
n=1 Sn

j , is a continuous

(F j
t × F k

t̄k
)t≥0-local martingale. We now claim that

∨∞
n=1 Sn

j = Tj (t̄k). Fix any n ∈ N. If
T n

k < t̄k then Sn
j = 0 < Tj (t̄k). If t̄k ≤ T n

k then Sn
j = T n

j . From t̄k ≤ T n
k we have Kk(t̄k) ⊂ Hn

k .

From Sn
j = T n

j we have Kj(S
n
j ) ⊂ Hn

j . Since Hn
j ∩ Hn

k = ∅, so Kj(S
n
j ) ∩ Kk(t̄k) = ∅, and so

again we have Sn
j < Tj (t̄k). Since the above holds for any n ∈ N, so

∨∞
n=1 Sn

j ≤ Tj (t̄k). Now

suppose t0 < Tj (t̄k). Then Kj(t0)∩Kk(t̄k) = ∅. We may always find (H
n0
1 ,H

n0
2 ) ∈ HP∗ such

that Kj(t0) ⊂ H
n0
j and Kk(t̄k) ⊂ H

n0
k . Then we have t̄k ≤ T

n0
k . So

∨∞
n=1 Sn

j ≥ S
n0
j = T

n0
j ≥ t0.

Since this holds for any t0 < Tj (t̄k), so
∨∞

n=1 Sn
j = Tj (t̄k). Thus, Bj,t̄k (t), 0 ≤ t < Tj (t̄k), is

a continuous (F j
t × F k

t̄k
)t≥0-local martingale. Using a similar argument, we conclude that

Bj,t̄k (t)
2 − t , 0 ≤ t < Tj (t̄k), is also a continuous (F j

t × F k
t̄k
)t≥0-local martingale. Using the

characterization of Brownian motion in [7], we complete the proof. �

Theorem 5.1 Let a > 0. Let t̄2 ∈ (0, T2) be an (F 2
t )-stopping time. Let C1 = a · ξ2(t̄2)−p2(t̄2)

p2(t̄2)−q2(t̄2)
>

0, w(z) = C1 · z−q2(t̄2)

ξ2(t̄2)−z
, and W = w ◦ ϕ2(t̄2, ·). Then after a time-change, W(β1(t)), 0 ≤ t <

T1(t̄2), has the distribution of a degenerate intermediate SLE(κ;ρ) trace with force points
0+ and a. Moreover, a.s. T1(t̄2) < T1 and β1(T1(t̄2)) = β2(t̄2).

Proof Let C2 = C1 · (ξ2(t̄2) − q2(t̄2)) > 0. For 0 ≤ t < T1(t̄2), define

ϕ̃(t, z) = C2A2,1(t, t̄2)

A2,0(t, t̄2) − ϕ1,t̄2(t,w
−1(z))

− C1 +
∫ t

0

2C2A2,1(s, t̄2)A1,1(s, t̄2)
2

E1,0(s, t̄2)3
ds; (5.3)

˜ξ(t) = C2A2,1(t, t̄2)

E2,0(s, t̄2)
− C1 +

∫ t

0

2C2A2,1(s, t̄2)A1,1(s, t̄2)
2

E1,0(s, t̄2)3
ds; (5.4)

p̃(t) = C2A2,1(t, t̄2)

E2,1(t, t̄2)
− C1 +

∫ t

0

2C2A2,1(s, t̄2)A1,1(s, t̄2)
2

E1,0(s, t̄2)3
ds; (5.5)

q̃(t) = C2A2,1(t, t̄2)

E2,2(t, t̄2)
− C1 +

∫ t

0

2C2A2,1(s, t̄2)A1,1(s, t̄2)
2

E1,0(s, t̄2)3
ds. (5.6)

Since A2,0(0, t̄2) = ξ2(t̄2), A2,1(0, t̄2) = 1, and ϕ1,t̄2(0, ·) = id, so ϕ̃(0, z) = z. Using
(4.15) and (4.16) with j = 1 and k = 2, it is straightforward to check that

∂t ϕ̃(t, z) = 2C2
2N(t, t̄2)

2

ϕ̃(t, z) −˜ξ(t)
. (5.7)

Let v(t) = ∫ t

0 C2
2N(s, t̄2)

2 ds. Then v(0) = 0 and v is continuous and strictly increasing. So
v maps [0, T1(t̄2)) onto [0, T ) for some T ∈ (0,∞]. Let ϕ(t, ·) = ϕ̃(v−1(t), ·) and ξ(t) =
˜ξ(v−1(t)) for 0 ≤ t < T . From (5.7), we have ∂tϕ(t, z) = 2

ϕ(t,z)−ξ(t)
. Thus ϕ(t, ·), 0 ≤ t < T ,

are the chordal Loewner maps driven by ξ .
Note that w maps H conformally onto H, and w(ξ2(t̄2)) = ∞. Since ϕ2(t̄2, ·) maps

H \ β2((0, t̄2]) conformally onto H, and ϕ2(t̄2, β2(t̄2)) = ξ2(t̄2), so W maps H \ β2((0, t̄2])
conformally on H, and W(β2(t̄2)) = ∞. For any t ∈ [0, T1(t̄2)), w−1 maps H\W(β1((0, t]))
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conformally onto H \ ϕ2(t̄2, β1((0, t])) = H \ K1,t̄2(t). Since ϕ1,t̄2(t, ·) maps H \ K1,t̄2(t)

conformally onto H, so from (5.3), ϕ̃(t, ·) maps H \ W(β1((0, t])) conformally onto H. For
0 ≤ t < T , let β(t) = W(β1(v

−1(t))), then ϕ(t, ·) maps H \ β((0, t]) conformally onto H.
So β(t), 0 ≤ t < T , is the chordal Loewner trace driven by ξ .

Let p(t) = p̃(v−1(t)) and q(t) = q̃(v−1(t)), 0 ≤ t < T . Applying (4.15) and (4.19) with
j = 1 and k = 2, and using v′(t) = C2

2N(t, t̄2)
2, it is straightforward to check that

p′(t) = 2

p(t) − ξ(t)
, 0 < t < T ; q ′(t) = 2

q(t) − ξ(t)
, 0 ≤ t ≤ T . (5.8)

Moreover, since A1,0(t, t̄2) < B1,0(t, t̄2) < B2,0(t, t̄2) < A2,0(t, t̄2) for 0 < t < T1(t̄2), so from
(5.4)–(5.6) and the definition of E2,m, m = 0,1,2, we have

ξ(t) < p(t) < q(t) < ∞, 0 < t < T . (5.9)

Since A1,0(0, t̄2) = q2(t̄2) = B1,0(0, t̄2), and A2,0(0, t̄2) = ξ2(t̄2), so E2,0(0, t̄2) =
E2,1(0, t̄2) = ξ2(t̄2) − q2(t̄2). Note that A2,1(0, t̄2) = 1, so

ξ(0) = p(0) = C2

ξ2(t̄2) − q2(t̄2)
− C1 = 0. (5.10)

Since B2,0(0, t̄2) = p2(t̄2), so E2,2(0, t̄2) = ξ2(t̄2) − p2(t̄2). Thus,

q(0) = C2

ξ2(t̄2) − p2(t̄2)
− C1 = a > 0. (5.11)

Note that E2,0 = −E1,0. Applying (4.15) and (4.21) with j = 1, k = 2 and m = 0, we get

d˜ξ(t) = C2N(t, t̄2) dξ1(t)

+ C2
A2,1(t, t̄2)

E1,0(t, t̄2)

[(

κ

2
− 3

)

A1,2(t, t̄2)

E1,0(t, t̄2)
+ (6 − κ)

A1,1(t, t̄2)
2

E1,0(t, t̄2)2

]

dt. (5.12)

From (4.1), (4.39) and (4.40), we see that ξ1(t), 0 ≤ t < T1(t̄2), satisfies the (F 1
t × F 2

t̄2
)t≥0-

adapted SDE:

dξ1(t) = √
κdB1,t̄2(t)

+
[(

3 − κ

2

)(

A1,2

A1,1
− 2A1,1

E1,0

)

+ g0(R)

(

A1,1

E1,1
− A1,1

E1,2

)]∣

∣

∣

∣

(t,t̄2)

dt. (5.13)

From (5.12) and (5.13) we conclude that

d˜ξ(t) = C2N(t, t̄2)

[√
κ dB1,t̄2(t) + g0(R(t, t̄2))

(

A1,1(t, t̄2)

E1,1(t, t̄2)
− A1,1(t, t̄2)

E1,2(t, t̄2)

)

dt

]

. (5.14)

Let

S(t) = g0(R(t, t̄2))

C2N(t, t̄2)

(

A1,1(t, t̄2)

E1,1(t, t̄2)
− A1,1(t, t̄2)

E1,2(t, t̄2)

)

. (5.15)

Since ˜ξ(t) = ξ(v(t)) and v′(t) = C2
2N(t, t̄2)

2, so from (5.14) and Lemma 5.2, there is a
Brownian motion B(t) such that for 0 < t < T ,

dξ(t) = √
κ dB(t) + S(v−1(t)) dt. (5.16)
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From (5.4)–(5.6), we have

p̃(t) −˜ξ(t) = C2
A2,1(t, t̄2)E1,1(t, t̄2)

E1,0(t, t̄2)E2,1(t, t̄2)
;

q̃(t) −˜ξ(t) = C2
A2,1(t, t̄2)E1,2(t, t̄2)

E1,0(t, t̄2)E2,2(t, t̄2)
.

Thus,

p̃(t) −˜ξ(t)

q̃(t) −˜ξ(t)
= E1,1(t, t̄2)E2,2(t, t̄2)

E1,2(t, t̄2)E2,1(t, t̄2)
= R(t, t̄2).

From (3.7), (5.15) and the above formulas, we get

J (p̃(t) −˜ξ(t), q̃(t) −˜ξ(t)) = −
(

1

p̃(t) −˜ξ(t)
− 1

q̃(t) −˜ξ(t)

)

· g0

(

p̃(t) −˜ξ(t)

q̃(t) −˜ξ(t)

)

= S(t).

From (5.16) we find that, for 0 < t < T ,

dξ(t) = √
κ dB(t) + J (p(t) − ξ(t), q(t) − ξ(t)) dt. (5.17)

So ξ(t), p(t) and q(t), 0 < t < T , solve (5.8) and (5.17), and satisfy (5.9)–(5.11). Assume
that this solution can be extended beyond T . Since κ ∈ (0,4), so β(T ) = limt→T − β(t) ∈ H.
Thus, limt→(T1(t̄2))− W(β1(t)) ∈ H. From the definition, W maps H \ β((0, t̄2]) conformally
onto H. So we have limt→(T1(t̄2))− β1(t) ∈ H \ β((0, t̄2]). This implies that the distance be-
tween β1((0, T1(t̄2)]) and β2((0, t̄2]) is positive. This is impossible because of the definition
of T1(t̄2) and the fact that limt→T −

1
β1(t) = x2 = β2(0). Thus (0, T ) is the maximal interval

of the solution. From (5.8)–(5.11) and (5.17), we see that β(t), 0 ≤ t < T , is a degener-
ate intermediate SLE(κ;ρ) trace with force points 0+ and a. Since β is a time-change of
W(β1), so after a time-change, W(β1(t)), 0 ≤ t < T1(t̄2), has the distribution of a degenerate
intermediate SLE(κ;ρ) trace with force points 0+ and a.

From Corollary 3.1 and the fact that W−1(∞) = β2(t̄2), we see that a.s. β2(t̄2) is a
subsequential limit of β1(t) as t → (T1(t̄2))

−. If T1(t̄2) = T1 then limt→(T1(t̄2))− β1(t) =
limt→T −

1
β1(t) = x2 �= β2(t̄2) because t̄2 > 0, which a.s. does not happen. Thus, a.s. T1(t̄2) <

T1. Since β1 is continuous on [0, T1), so a.s. β1(T1(t̄2)) = limt→(T1(t̄2))− β1(t). Since a.s.
β2(t̄2) is a subsequential limit of β1(t) as t → (T1(t̄2))

−, so β1(T1(t̄2)) = β2(t̄2). �

Theorem 5.2 Almost surely β1((0, T1)) = β2((0, T2)).

Proof For n ∈ N, let Sn be the first time that |β2(t) − x1| = |x2 − x1|/(n + 1). Then for each
n ∈ N, Sn is an (F 2

t )-stopping time, Sn ∈ (0, T2), and T2 = ∨∞
n=1 Sn. For each q ∈ Q>0, let

Sn,q = Sn ∧ q , which is also an (F 2
t )-stopping time. Then {Sn,q : n ∈ N, q ∈ Q>0} is a dense

subset of (0, T ). Applying Theorem 5.1 with t̄2 = Sn,q , we see that a.s. β2(Sn,q) ∈ β1((0, T1))

for any n ∈ N and q ∈ Q>0. From the denseness of {Sn,q} and the continuity of β1, we have
a.s. β2((0, T2)) ⊂ β1((0, T1)). Since both β1 and β2 are simple curves, β1(0) = x1 = β2(T2),
and β2(0) = x2 = β1(T1), so a.s. β1((0, T1)) = β2((0, T2)). �

Corollary 5.1 Suppose β(t), 0 ≤ t < ∞, is a degenerate intermediate SLE(κ;ρ) trace.
Then a.s. limt→∞ β(t) = ∞.
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Proof Suppose that the force points for β is 0+ and a0 > 0. Applying Theorem 5.1 with
a = a0 and any (F 2

t )-stopping time t̄2 ∈ (0, T2). Then W(β1(t)), 0 ≤ t < T1(t̄2), has the
same distribution as β(t), 0 ≤ t < ∞, up to a time-change, and a.s. limt→(T1(t̄2))− β1(t) =
β1(T1(t̄2)) = β2(t̄2). Since W(β2(t̄2)) = ∞, so a.s. limt→(T1(t̄2))− W(β1(t)) = ∞. Thus, a.s.
limt→∞ β(t) = ∞. �

Proof of Theorem 1.1 We may find W1 that maps H conformally or conjugate confor-
mally onto H such that W1(x1) = 0, W1(x

+
1 ) = 0σ , and W1(x2) = ∞. Let W2 = W−1

0 ◦ W1.
Then W2 maps H conjugate conformally or conformally onto H such that W2(x2) = 0,
W2(x

−
2 ) = 0σ , and W2(x1) = ∞. Recall that for j = 1,2, βj (t), 0 < t < Tj , is a chordal

SLE(κ;ρ,κ − 6 − ρ) trace started from (xj ;xσj

j , x3−j ), where σ1 = + and σ2 = −. From

Proposition 2.1, after a time-change, W−1
j (β0(t)), 0 < t < ∞, has the same distribution as

βj (t), 0 < t < Tj , j = 1,2. From Theorem 5.1, after a time-change, the reversal of β2(t),
0 < t < T2, agrees with β1(t), 0 < t < T1. Thus, W−1

2 (β0(1/t)), 0 < t < ∞, has the same
distribution as W−1

1 (β0(t)), 0 < t < ∞, after a time-change. Since W0 = W1 ◦ W−1
2 , so the

proof is finished. �

Proof of Theorem 1.2 Applying Theorem 5.1 with any (F 2
t )-stopping time t̄2 ∈ (0, T2) and

a = 1/b0, we get w(z) = a · ξ2(t̄2)−p2(t̄2)

p2(t̄2)−q2(t̄2)
· z−q2(t̄2)

ξ2(t̄2)−z
and W = w ◦ϕ2(t̄2, ·), such that after a time-

change, W(β1(t)), 0 ≤ t < T1(t̄2), has the same distribution as a degenerate intermediate
SLE(κ;ρ) trace with force points 0+ and a = 1/b0.

Let ˜T = T2 − t̄2. For 0 ≤ t < ˜T , let ˜ξ(t) = ξ2(t̄2 + t), p̃(t) = p2(t̄2 + t) and q̃(t) =
q2(t̄2 + t). Let ˜B(t) = B2(t̄2 + t) − B2(t̄2), t ≥ 0. Then ˜B(t) is a Brownian motion that is
independent of ξ2(t̄2), p2(t̄2) and q2(t̄2). From (4.1)–(4.3), ˜ξ(t), p̃(t) and q̃(t), 0 ≤ t < ˜T ,
satisfy the following SDE:

d˜ξ(t) = √
κ d˜B(t) + ρ

˜ξ(t) − p̃(t)
dt + κ − 6 − ρ

˜ξ(t) − q̃(t)
dt,

dp̃(t) = 2

p̃(t) −˜ξ(t)
dt, dq̃(t) = 2

q̃(t) −˜ξ(t)
dt,

with initial values

˜ξ(0) = ξ2(t̄2), p̃(0) = p2(t̄2), q̃(0) = q2(t̄2).

For 0 ≤ t < ˜T , let ϕ̃(t, ·) = ϕ2(t̄2 + t, ·) ◦ ϕ2(t̄2, ·)−1 and ˜β(t) = ϕ2(t̄2, β2(t̄2 + t)). Then
ϕ̃(0, z) = z, and ϕ̃(t, z), 0 ≤ t < ˜T , satisfy ∂t ϕ̃(t, z) = 2

ϕ̃(t,z)−˜ξ(t)
, and for each 0 ≤ t < ˜T ,

ϕ̃(t, ·) maps H \ ˜β((0, t]) conformally onto H. Thus, ˜β(t), 0 ≤ t < ˜T , is the chordal
Loewner trace driven by ˜ξ . The solution ˜ξ(t), p̃(t) and q̃(t), 0 ≤ t < ˜T , could not be
extended beyond ˜T because limt→˜T − ˜β(t) = ϕ2(t̄2, limt→T −

2
β2(t)) = ϕ2(t̄2, x1) ∈ R. Thus,

˜β(t) = ϕ2(t̄2, β2(t̄2 + t)), 0 < t < T2 − t̄2, is a chordal SLE(κ;ρ,κ − 6 − ρ) trace started
from (ξ2(t̄2);p2(t̄2), q2(t̄2)). Let W1 = W−1

0 ◦ w. Then W−1
0 ◦ W = W1 ◦ ϕ2(t̄2, ·), W1 maps

H conformally onto H, W1(ξ2(t̄2)) = 0, W1(q2(t̄2)) = ∞ and W1(p2(t̄2)) = 1/a = b0. From
Proposition 2.1, W−1

0 ◦ W(β2(t̄2 + t)) = W1(˜β(t)), 0 < t < T2 − t̄2, has the same distrib-
ution as β0(t), 0 < t < ∞, after a time-change. From Theorems 5.1 and 5.2, after a time-
change, the reversal of β2(t), t̄2 < t < T2, has the same distribution as β1(t), 0 < t < T1(t̄2).
Thus, after a time-change, W0(β0(1/t)), 0 < t < ∞, has the same distribution as the reversal
of W(β1(t)), 0 < t < T1(t̄2), which has the same distribution as a degenerate intermediate
SLE(κ;ρ) trace with force points 0+ and 1/b0. �
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Now we will see some applications of Theorem 1.1. The following proposition is Theo-
rem 5.4 in [10], where ∂+

H
S is the right boundary of S in H (cf. [10]).

Proposition 5.1 Let κ > 4, C ≥ 1/2, and K(t), 0 ≤ t < ∞, be a chordal SLE(κ;C(κ −
4)) process started from (0;0+). Let K(∞) = ⋃

t<∞ K(t). Let W0(z) = 1/z. Then
W0(∂

+
H
K(∞)) has the same distribution as the image of a chordal SLE(κ ′;C ′(κ ′ −

4), 1
2 (κ ′ − 4)) trace started from (0;0+,0−), where κ ′ = 16/κ and C ′ = 1 − C.

Applying the above proposition with C = 1, and applying Theorem 1.1 with κ = κ ′ and
ρ = 1

2 (κ ′ − 4), we conclude the following theorem, which is Conjecture 2 in [1].

Theorem 5.3 Let κ > 4, and K(t), 0 ≤ t < ∞, be a chordal SLE(κ;κ − 4) process started
from (0;0+). Let K(∞) = ⋃

t<∞ K(t). Then ∂+
H

K(∞) has the same distribution as the
image of a chordal SLE(κ ′; 1

2 (κ ′ − 4)) trace started from (0;0−), where κ ′ = 16/κ .

The following proposition is a part of Theorem 5.2 in [11].

Proposition 5.2 Let κ > 4 and C+,C− ≥ 1/2. Let K(t), 0 ≤ t < ∞, be a chordal
SLE(κ;C+(κ − 4),C−(κ − 4)) process started from (0;0+,0−). Let K(∞) = ⋃

t≥0 K(t).
Let κ ′ = 16/κ and W0(z) = 1/z. Then W0(∂

+
H
K(∞)) has the same distribution as the image

of a chordal SLE(κ ′; (1 − C+)(κ ′ − 4), (1/2 − C−)(κ ′ − 4)) trace started from (0;0+,0−).

Applying Proposition 5.2 with C+ = 1 or C− = 1/2, and using Theorem 1.1, we con-
clude the following two theorems.

Theorem 5.4 Let κ > 4, C ≥ 1/2, and K(t), 0 ≤ t < ∞, be a chordal SLE(κ;κ −4,C(κ −
4)) process started from (0;0+,0−). Let K(∞) = ⋃

t<∞ K(t). Then ∂+
H
K(∞) has the same

distribution as the image of a chordal SLE(κ ′; (1/2−C)(κ ′ −4)) trace started from (0;0−),
where κ ′ = 16/κ .

Theorem 5.5 Let κ > 4, C ≥ 1/2, and K(t), 0 ≤ t < ∞, be a chordal SLE(κ;C(κ −
4), 1

2 (κ − 4)) process started from (0;0+,0−). Let K(∞) = ⋃

t<∞ K(t). Then ∂+
H
K(∞)

has the same distribution as the image of a chordal SLE(κ ′; (1 − C)(κ ′ − 4)) trace started
from (0;0+), where κ ′ = 16/κ .
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